Connect with us

Published

on

Google is expanding its data centers to bolster its AI capabilities, with a new project in Finland exemplifying the company’s efforts to manage the environmental impacts of this growth.

Google has announced a €1 billion (approximately $1.1 billion) investment to enhance its data center in Finland, aimed at “unlocking the potential of AI.” A key component of this expansion is a plan to recycle heat generated by the data center to warm local homes, schools, and public buildings.

The energy demands of data centers, particularly those used for AI, are significant and growing. To mitigate the environmental impact, Google is implementing heat reuse strategies to reduce the strain on power grids and align with the company’s climate objectives. This is crucial as Google’s push to integrate AI into its Search and other products could otherwise jeopardize its sustainability goals and stress local energy systems.

This announcement follows Google’s recent I/O event, where the company introduced a new AI-powered version of its search engine and an upgraded Gemini model. AI was a central theme, mentioned over 120 times, and featured in various applications from vacation planning to scam detection and virtual assistants.

Running AI models necessitates more robust data centers, which can exacerbate electricity demands and pressure power grids. This is a concern, especially as there is a need to replace fossil fuel power plants with renewable energy sources to combat climate change.

To mitigate these effects, Google has partnered with the municipality of Hamina and the local energy provider Haminan Energia. By 2025, they plan to capture heat from the data center’s servers and redistribute it to the community, providing heat to homes and public buildings. This project is a first for Google, although it has been using server heat for its own offices for nearly ten years. The expanded data center aims to meet 80 percent of the local district’s annual heating needs, with Google sourcing carbon-free energy for 97 percent of the data center’s consumption, making the heat supplied to Haminan Energia mostly clean.

While this is a significant local initiative, it addresses a broader global challenge. Google has not updated its sustainability report since July 2023, prior to its intensive AI developments. Meanwhile, competitors like Microsoft have seen their greenhouse gas emissions rise by 30 percent since making major climate commitments in 2020.

Google has pledged to achieve net-zero carbon emissions by 2030, which involves balancing emitted carbon dioxide with equivalent carbon capture or offsets. Achieving this goal becomes more challenging if AI-driven energy consumption continues to escalate.

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Space

World’s First Wooden Satellite Launched into Space

Aim is to Test Space-Ready Timber for Future Mission.

Published

on

By

Artistic representation of Lignosat wooden satellite.
Art: KyotoU/Gakuji Tobiyama

In a groundbreaking achievement, scientists have launched the world’s first wooden satellite into space to explore the material’s suitability for orbit. Named LignoSat, derived from the Latin for “wood,” the satellite was sent into space on a SpaceX mission to the International Space Station (ISS) on Monday. It will later be deployed into orbit, where researchers will observe how the wood withstands the extreme conditions of space over a period of six months.

The initiative, a collaboration between Kyoto University and Sumitomo Forestry, began in 2020. In 2022, they conducted exposure tests aboard the ISS for over 240 days, ultimately selecting Hoonoki, a type of Magnolia wood known for its strength, stability, and workability. This wood is traditionally used in Japan for crafting sword sheaths due to its shatter-resistant properties, according to Reuters.

Since space is devoid of water and oxygen, the wood is shielded from fire and decay, Kyoto University scientists explain. Additionally, they will evaluate the wood’s potential to protect semiconductors from space radiation, Reuters reports.

“If our wooden satellite succeeds, we plan to propose it to Elon Musk’s SpaceX,” said Takao Doi, an astronaut and professor at Kyoto University. The team envisions that wooden satellites could reduce space pollution, as they would not emit aluminum oxide when burning up upon re-entry, unlike traditional metal satellites. Over the next 50 years, Doi’s team envisions growing wood for timber-based habitats on the Moon and Mars. “With timber, a material we can cultivate ourselves, we could construct homes and sustain life in space indefinitely,” Doi told Reuters.

Continue Reading

Science

Scientists Behind AI Breakthroughs Awarded Nobel Prize

Published

on

By

Geoffrey Hinton, professor emeritus at the University of Toronto, and John Hopfield, professor at Princeton University, were honored with the Nobel Prize in Physics for their pioneering contributions that laid the “foundation of today’s powerful machine learning.”

The Royal Swedish Academy of Sciences highlighted their work from the 1980s, which led to the development of artificial neural networks—computer systems inspired by the brain’s structure. These neural networks, which enable AI to “learn by example,” have been instrumental in advances like language processing and image recognition.

Hinton, often called the “Godfather of AI,” expressed his surprise at the award, stating, “I had no expectations of this. I am extremely surprised and I’m honoured.” His key contribution, the development of the Boltzmann machine, a generative model, played a significant role in modern AI.

Despite his monumental achievements, Hinton has raised concerns about the potential misuse of AI. In a 2023 New York Times interview, he expressed regret over his life’s work, noting, “It is hard to see how you can prevent the bad actors from using it for bad things.” He left his position at Google in 2023 to more openly discuss the dangers AI might pose.

The Nobel committee also acknowledged the work of John Hopfield, whose Hopfield network provided early insights into how artificial neural networks can replicate brain patterns. Both scientists’ discoveries have been crucial in shaping today’s AI technologies.

Hinton used tools from statistical physics, the science of systems built from many similar components. The machine is trained by feeding it examples that are very likely to arise when the machine is run. The Boltzmann machine can be used to classify images or create new examples of the type of pattern on which it was trained. Hinton has built upon this work, helping initiate the current explosive development of machine learning.

Hinton’s contributions build on the work of fellow Nobel laureate John Hopfield, who developed the Hopfield network, an artificial neural network designed to recreate patterns and store memory. This type of network, introduced in the 1980s, models how neurons in the brain interact, using a system that can “remember” and retrieve stored information. Hopfield’s work provided early insight into how artificial neural networks could replicate brain-like processes, paving the way for the more advanced machine learning and neural network models that Hinton and others would later develop.

The Hopfield network utilises physics that describes a material’s characteristics due to its atomic spin – a property that makes each atom a tiny magnet. The network as a whole is described in a manner equivalent to the energy in the spin system found in physics, and is trained by finding values for the connections between the nodes so that the saved images have low energy. When the Hopfield network is fed a distorted or incomplete image, it methodically works through the nodes and updates their values so the network’s energy falls. The network thus works stepwise to find the saved image that is most like the imperfect one it was fed with.

Hinton continues to express his concerns about the future of AI, reiterating these in a recent call with reporters. He noted, “We have no experience of what it’s like to have things smarter than us. And it’s going to be wonderful in many respects.” However, he also cautioned about the potential dangers, emphasizing the need to remain vigilant about “a number of possible bad consequences, particularly the threat of these things getting out of control.” Hinton’s remarks reflect his growing unease about the rapid development of AI technologies and their potential misuse.

Continue Reading

Science

Moon Drifting Away, Earth Could Have 25-Hour Days: Study

A study reveals that the Moon has been receding from Earth at a rate of approximately 3.8 centimeters per year.

Published

on

By

Scientists suggest that a day on Earth might extend to 25 hours in the future due to the Moon’s gradual drift away from our planet.

Research from the University of Wisconsin-Madison indicates that the Moon is receding from Earth at a rate of approximately 3.8 centimeters per year. This phenomenon could result in Earth days lasting 25 hours in 200 million years. Historically, a day on Earth lasted just over 18 hours around 1.4 billion years ago.

Stephen Meyers, a professor in the geoscience department at the University of Wisconsin-Madison, points to the gravitational interactions between Earth and the Moon as a primary cause. “As the Moon moves away, the Earth is like a spinning figure skater who slows down as they stretch their arms out,” explained Meyers.

Meyers and his team are using ‘astrochronology’ to study ancient geological processes. “We want to be able to study rocks that are billions of years old in a way that is comparable to how we study modern geologic processes,” he said.

The concept of the Moon’s recession is not new, but the Wisconsin research delves deeper into its historical and geological context. By examining ancient geological formations and sediment layers, researchers have tracked the Earth-Moon system over billions of years. They found that while the Moon’s current recession rate is relatively stable, it has fluctuated due to various factors such as Earth’s rotational speed and continental drift.

Continue Reading

Trending